129 resultados para Cystadenocarcinoma, Serous


Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: We analyzed the association between 53 genes related to DNA repair and p53-mediated damage response and serous ovarian cancer risk using case-control data from the North Carolina Ovarian Cancer Study (NCOCS), a population-based, case-control study. METHODS/PRINCIPAL FINDINGS: The analysis was restricted to 364 invasive serous ovarian cancer cases and 761 controls of white, non-Hispanic race. Statistical analysis was two staged: a screen using marginal Bayes factors (BFs) for 484 SNPs and a modeling stage in which we calculated multivariate adjusted posterior probabilities of association for 77 SNPs that passed the screen. These probabilities were conditional on subject age at diagnosis/interview, batch, a DNA quality metric and genotypes of other SNPs and allowed for uncertainty in the genetic parameterizations of the SNPs and number of associated SNPs. Six SNPs had Bayes factors greater than 10 in favor of an association with invasive serous ovarian cancer. These included rs5762746 (median OR(odds ratio)(per allele) = 0.66; 95% credible interval (CI) = 0.44-1.00) and rs6005835 (median OR(per allele) = 0.69; 95% CI = 0.53-0.91) in CHEK2, rs2078486 (median OR(per allele) = 1.65; 95% CI = 1.21-2.25) and rs12951053 (median OR(per allele) = 1.65; 95% CI = 1.20-2.26) in TP53, rs411697 (median OR (rare homozygote) = 0.53; 95% CI = 0.35 - 0.79) in BACH1 and rs10131 (median OR( rare homozygote) = not estimable) in LIG4. The six most highly associated SNPs are either predicted to be functionally significant or are in LD with such a variant. The variants in TP53 were confirmed to be associated in a large follow-up study. CONCLUSIONS/SIGNIFICANCE: Based on our findings, further follow-up of the DNA repair and response pathways in a larger dataset is warranted to confirm these results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Borderline ovarian tumors represent an understudied subset of ovarian tumors. Most studies investigating aberrations in borderline tumors have focused on KRAS/BRAF mutations. In this study, we conducted an extensive analysis of mutations and single-nucleotide polymorphisms (SNPs) in borderline ovarian tumors. Using the Sequenom MassArray platform, we investigated 160 mutations/polymorphisms in 33 genes involved in cell signaling, apoptosis, angiogenesis, cell cycle regulation and cellular senescence. Of 52 tumors analyzed, 33 were serous, 18 mucinous and 1 endometrioid. KRAS c.35G>A p.Gly12Asp mutations were detected in eight tumors (six serous and two mucinous), BRAF V600E mutations in two serous tumors, and PIK3CA H1047Y and PIK3CA E542K mutations in a serous and an endometrioid BOT, respectively. CTNNB1 mutation was detected in a serous tumor. Potentially functional polymorphisms were found in vascular endothelial growth factor (VEGF), ABCB1, FGFR2 and PHLPP2. VEGF polymorphisms were the most common and detected at four loci. PHLPP2 polymorphisms were more frequent in mucinous as compared with serous tumors (P=0.04), with allelic imbalance in one case. This study represents the largest and most comprehensive analysis of mutations and functional SNPs in borderline ovarian tumors to date. At least 25% of borderline ovarian tumors harbor somatic mutations associated with potential response to targeted therapeutics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Uterine Papillary Serous Carcinoma (UPSC) is uncommon and accounts for less than 5% of all uterine cancers. Therefore the majority of evidence about the benefits of adjuvant treatment comes from retrospective case series. We conducted a prospective multi-centre non-randomized phase 2 clinical trial using four cycles of adjuvant paclitaxel plus carboplatin chemotherapy followed by pelvic radiotherapy, in order to evaluate the tolerability and safety of this approach. Methods This trial enrolled patients with newly diagnosed, previously untreated patients with stage 1b-4 (FIGO-1988) UPSC with a papillary serous component of at least 30%. Paclitaxel (175 mg/m2) and carboplatin (AUC 6) were administered on day 1 of each 3-week cycle for 4 cycles. Chemotherapy was followed by external beam radiotherapy to the whole pelvis (50.4 Gy over 5.5 weeks). Completion and toxicity of treatment (Common Toxicity Criteria, CTC) and quality of life measures were the primary outcome indicators. Results Twenty-nine of 31 patients completed treatment as planned. Dose reduction was needed in 9 patients (29%), treatment delay in 7 (23%), and treatment cessation in 2 patients (6.5%). Hematologic toxicity, grade 3 or 4 occurred in 19% (6/31) of patients. Patients' self-reported quality of life remained stable throughout treatment. Thirteen of the 29 patients with stages 1–3 disease (44.8%) recurred (average follow up 28.1 months, range 8–60 months). Conclusion This multimodal treatment is feasible, safe and tolerated reasonably well and would be suitable for use in multi-institutional prospective randomized clinical trials incorporating novel therapies in patients with UPSC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High tumor kallikrein-related-peptidase 4 (KLK4) levels are associated with a poor outcome for women with serous epithelial ovarian cancer (EOC), for which peritoneal dissemination and chemoresistance are key events. To determine the role of KLK4 in these events, we examined KLK4-transfected SKOV-3 and endogenous KLK4 expressing OVCA432 cells in 3-dimensional (3D) suspension culture to mimic the ascites microenvironment. KLK4-SKOV-3 cells formed multicellular aggregates (MCAs) as seen in ascites, as did SKOV-3 cells treated with active KLK4. MCA formation was reduced by treatment with a KLK4 blocking antibody or the selective active site KLK4 sunflower trypsin inhibitor (SFTI-FCQR). KLK4-MCAs formed larger cancer cell foci in mesothelial cell monolayers than those formed by vector and native SKOV-3 cells, suggesting KLK4-MCAs are highly invasive in the peritoneal microenvironment. A high level of KLK4 is expressed by ascitic EOC cells compared to matched primary tumor cells, further supporting its role in the ascitic microenvironment. Interestingly, KLK4 transfected SKOV-3 cells expressed high levels of the KLK4 substrate, urokinase plasminogen activator (uPA), particularly in 3D-suspension, and high levels of both KLK4 and uPA were observed in patient cells taken from ascites. Importantly, the KLK4-MCAs were paclitaxel resistant which was reversed by SFTI-FCQR and to a lesser degree by the general serine protease inhibitor, Aprotinin, suggesting that in addition to uPA, other as yet unidentified substrates of KLK4 must be involved. Nonetheless, these data suggest that KLK4 inhibition, in conjunction with paclitaxel, may improve the outcome for women with serous epithelial ovarian cancer and high KLK4 levels in their tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The utility of GATA3 as a marker for metastatic breast carcinoma in serous effusion specimens was investigated. Methods Cell block sections from 74 serous effusion specimens (32 ascitic, 2 pericardial and 40 pleural fluids) were stained with an anti-GATA3 murine monoclonal antibody. The specimens included 62 confirmed metastatic carcinomas from breast (30), female genital tract (13), gastrointestinal tract (7), lung adenocarcinoma (9), pancreas (1), kidney (1) and bladder (1). The breast carcinoma cases included 15 ductal carcinomas, 8 lobular carcinomas and in 7 the histology sub-type was not available. Twelve cases containing florid reactive mesothelial cells were also stained. The breast carcinoma cases were also stained for mammaglobin and GCDFP-15 to compare sensitivity with GATA3. Results Positive nuclear staining for GATA3 was present in 90% (27/30) of metastatic breast carcinoma specimens. All non-breast metastatic carcinomas tested were negative with the exception of the single case of metastatic urothelial carcinoma. No staining was observed in any of the benign reactive cases or in benign mesothelial cells present in the malignant cell block preparations. Two cases showed weak positivity of benign lymphoid cells. Staining results were unambiguous as all positive cases showed intense nuclear staining in >50% of tumor cells. Mammaglobin (57%; 17/30) and GCDFP-15 (33%; 10/30) were less sensitive markers of breast carcinoma. If used in a panel, mammaglobin and GCFP-15 staining would have identified only one additional case to those stained with GATA3. Conclusions GATA3 may be a useful addition to immunostaining panels for serous effusion specimens when metastatic breast carcinoma is a consideration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Mutations in the TP53 gene are extremely common and occur very early in the progression of serous ovarian cancers. Gene expression patterns that relate to mutational status may provide insight into the etiology and biology of the disease. METHODS: The TP53 coding region was sequenced in 89 frozen serous ovarian cancers, 40 early stage (I/II) and 49 advanced stage (III/IV). Affymetrix U133A expression data was used to define gene expression patterns by mutation, type of mutation, and cancer stage. RESULTS: Missense or chain terminating (null) mutations in TP53 were found in 59/89 (66%) ovarian cancers. Early stage cancers had a significantly higher rate of null mutations than late stage disease (38% vs. 8%, p < 0.03). In advanced stage cases, mutations were more prevalent in short term survivors than long term survivors (81% vs. 30%, p = 0.0004). Gene expression patterns had a robust ability to predict TP53 status within training data. By using early versus late stage disease for out of sample predictions, the signature derived from early stage cancers could accurately (86%) predict mutation status of late stage cancers. CONCLUSIONS: This represents the first attempt to define a genomic signature of TP53 mutation in ovarian cancer. Patterns of gene expression characteristic of TP53 mutation could be discerned and included several genes that are known p53 targets or have been described in the context of expression signatures of TP53 mutation in breast cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epithelial ovarian cancer (EOC) has an innate susceptibility to become chemoresistant. Up to 30% of patients do not respond to conventional chemotherapy [paclitaxel (Taxol®) in combination with carboplatin] and, of those who have an initial response, many patients relapse. Therefore, an understanding of the molecular mechanisms that regulate cellular chemotherapeutic responses in EOC cells has the potential to impact significantly on patient outcome. The mitotic arrest deficiency protein 2 (MAD2), is a centrally important mediator of the cellular response to paclitaxel. MAD2 immunohistochemical analysis was performed on 82 high-grade serous EOC samples. A multivariate Cox regression analysis of nuclear MAD2 IHC intensity adjusting for stage, tumour grade and optimum surgical debulking revealed that low MAD2 IHC staining intensity was significantly associated with reduced progression-free survival (PFS) (p = 0.0003), with a hazard ratio of 4.689. The in vitro analyses of five ovarian cancer cell lines demonstrated that cells with low MAD2 expression were less sensitive to paclitaxel. Furthermore, paclitaxel-induced activation of the spindle assembly checkpoint (SAC) and apoptotic cell death was abrogated in cells transfected with MAD2 siRNA. In silico analysis identified a miR-433 binding domain in the MAD2 3' UTR, which was verified in a series of experiments. Firstly, MAD2 protein expression levels were down-regulated in pre-miR-433 transfected A2780 cells. Secondly, pre-miR-433 suppressed the activity of a reporter construct containing the 3'-UTR of MAD2. Thirdly, blocking miR-433 binding to the MAD2 3' UTR protected MAD2 from miR-433 induced protein down-regulation. Importantly, reduced MAD2 protein expression in pre-miR-433-transfected A2780 cells rendered these cells less sensitive to paclitaxel. In conclusion, loss of MAD2 protein expression results in increased resistance to paclitaxel in EOC cells. Measuring MAD2 IHC staining intensity may predict paclitaxel responses in women presenting with high-grade serous EOC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: The objective of this study was to investigate the relationship between BRCA1 protein expression, as determined by immunohistochemistry, and clinical outcome in uterine serous carcinoma (USC). METHODS: A tissue microarray containing duplicate cores of 73 cases of USC was immunohistochemically stained with mouse anti-BRCA1 (Ab-1) mouse monoclonal (MS110) antibody. The cores were scored in a semiquantitative manner evaluating both the distribution and intensity of nuclear staining. BRCA1 protein expression was correlated with progression-free survival. RESULTS: Seventy-two of 73 cases were assessable, and there was a statistically significant decreased progression-free survival for those cases exhibiting tumor cell nuclei staining of 76% or greater (P = 0.0023). CONCLUSIONS: Our study illustrates that a low level of BRCA1 protein expression is a favorable prognostic indicator in USC, similar to what is observed in high-grade serous ovarian carcinoma. Further studies should focus on the BRCA1 status of USCs at a molecular level and also investigate whether BRCA1 protein expression is associated with response to chemotherapy in USC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Higher expression of the miR-433 microRNA (miRNA) is associated with poorer survival outcomes in patients with HGSOC that may be overcome by a greater understanding of the functional role of this miRNA. We previously described miR-433 as a critical cell cycle regulator and mediator of cellular senescence. Downregulation of the mitotic arrest deficiency 2 (MAD2) protein by miR-433 led to increased cellular resistance to paclitaxel in epithelial ovarian cancer cells (EOC). Furthermore immunohistochemical (IHC) analysis of MAD2 expression in patients with HGSOC showed that loss of MAD2 was significantly associated with poorer patient survival. Higher miR-433 expression is also associated with an increased resistance to the platins which is unrelated to loss of MAD2 expression. In silico analysis of the miR-433 target proteins in the TCGA database identified the association between a number of miR-433 targets and poorer patient survival. IHC analysis of the miR-433 target, histone deacetylase 6 (HDAC6), confirmed that its expression was significantly associated with a decrease in patient overall survival. The knock-down of HDAC6 by siRNA in EOC cells did not attenuate apoptotic responses to paclitaxel or platin although lower endogenous HDAC6 expression was associated with more resistant EOC cell lines. In vitro analysis revealed that EOC cells which survived chemotherapeutic kill with high doses of paclitaxel expressed higher miR-433 and concomitant decreased expression of the miR-433 targets. These cells were more chemoresistant compared to the parental cell line and repopulated as 3d organoid cultures in non-adherent stem cell selective conditions; thus indicating that the cells which survive chemotherapy were viable, capable of regrowth and had an increased potential for pluripotency. In conclusion, our data suggests that chemotherapy is not driving the transcriptional upregulation of miR-433 but rather selecting a population of cells with high miR-433 expression that may contribute to chemoresistant disease and tumour recurrence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

: High-grade serous ovarian cancer is characterized by genomic instability, with one half of all tumors displaying defects in the important DNA repair pathway of homologous recombination. Given the action of poly(ADP-ribose) polymerase (PARP) inhibitors in targeting tumors with deficiencies in this repair pathway by loss of BRCA1/2, ovarian tumors could be an attractive population for clinical application of this therapy. PARP inhibitors have moved into clinical practice in the past few years, with approval from the Food and Drug Administration (FDA) and European Medicines Agency (EMA) within the past 2 years. The U.S. FDA approval of olaparib applies to fourth line treatment in germline BRCA-mutant ovarian cancer, and European EMA approval to olaparib maintenance in both germline and somatic BRCA-mutant platinum-sensitive ovarian cancer. In order to widen the ovarian cancer patient population that would benefit from PARP inhibitors, predictive biomarkers based on a clear understanding of the mechanism of action are required. Additionally, a better understanding of the toxicity profile is needed if PARP inhibitors are to be used in the curative, rather than the palliative, setting. We reviewed the development of PARP inhibitors in phase I-III clinical trials, including combination trials of PARP inhibitors and chemotherapy/antiangiogenics, the approval for these agents, the mechanisms of resistance, and the outstanding issues, including the development of biomarkers and the rate of long-term hematologic toxicities with these agents.

IMPLICATIONS FOR PRACTICE: The poly(ADP-ribose) polymerase (PARP) inhibitor olaparib has recently received approval from the Food and Drug Administration (FDA) and European Medicines Agency (EMA), with a second agent (rucaparib) likely to be approved in the near future. However, the patient population with potential benefit from PARP inhibitors is likely wider than that of germline BRCA mutation-associated disease, and biomarkers are in development to enable the selection of patients with the potential for clinical benefit from these agents. Questions remain regarding the toxicities of PARP inhibitors, limiting the use of these agents in the prophylactic or adjuvant setting until more information is available. The indications for olaparib as indicated by the FDA and EMA are reviewed.